Carbon and It's Compounds (Mind Map)

MIND MAP

Properties and versatile nature of carbon

- Always forms covalent bonds
- Tetravalent
- Tetrahedral
- 3 allotropes diamond, graphite and fullerenes
- Catenation Unique property of selflinking of carbon atoms

Ethanol

- Colourless, distinct smell and burning taste, soluble in water in all proportions, neutral to litmus
- Reaction with sodium
 2CH₃CH₂OH + Na → CH₃CH₂ONa + H₂
- Reaction with concentrated H₂SO₄

$$CH_3-CH_2-OH \xrightarrow{Conc.} H C=C H + H_2O$$

• Combustion $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 2H_2O + Heat$

Ethanoic Acid

- Colourless, pungent smelling liquid, soluble in water in all proportions
- Reaction with sodium carbonate
 2CH₃COOH + Na₂CO₃ → 2CH₃COONa + CO₂ + H₂ O
- Reaction with sodium hydrogen carbonate
 - $CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + CO_2 + H_2O$
- Esterification

$$\begin{array}{c} O \\ II \\ CH_3-C-OH + H-OCH_2-CH_3 \xrightarrow{\quad Conc. H_2SO_4 \\ \quad \Delta \\ \end{array} \rightarrow \begin{array}{c} CH_3-CH_3 \xrightarrow{\quad COH_2-CH_3} \xrightarrow{\quad CH_3-CH_2-CH_3} \end{array}$$

• Hydrolysis $CH_3COOC_2H_5$ NaOH $C_2H_8OH + CH_3COOH$

Chemical properties of Carbon compounds

Combustion: Burning of carbon compound in air

Substitution: Replacement of an atom or a group of atoms in a organic molecule by another atoms or group of atoms

Addition: Addition of two reactants to form a single product

Oxidation: Addition of oxygen

Soaps

- Sodium salts (or potassium salts) of the long chain carboxylic acids. The ionic group in soaps is -COO-Na⁺.
- Not suitable for washing purposes when water is hard.

Detergents

- Sodium salts of long chain benzene sulphonic acids. The ionic group in a detergent is −SO₃Na⁺ or −SO₄Na⁺.
- Can be used for washing even when the water is hard.

Name of	IUPAC Name
compounds	
Alkene	Alkane – ane + ene = Alkene
Alkyne	Alkane – ane + yne = Alkyne
Haloalkanes	Halo + alkane = Haloalkane
Alcohols	Alkane – e + ol = Alkanol
Aldehydes	Alkane – e + al = Alkanal
Ketone	Alkane – e + one = Alkanone
Carboxylic	Alkane – e + oic acid =
acid	Alkanoic acid